Без рубрики 'Правильная намотка импульсного трансформатора

Правильная намотка импульсного трансформатора

0 комментов
просмотров
19 мин. на чтение

Как намотать вторичную обмотку импульсного трансформатора

Подпаиваем два провода к выводу нашего транса от БП ПК.

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.

Оставляем хвост и изолируем.

Далее подпаиваем еще два провода к другим контактам.

Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.

Оставляем хвост.

Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.

Косу, которая получилась, перед  скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации. Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.


Классификация импульсных трансформаторов по виду сердечника и катушек.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ


Схема подключения импульсных трансформаторов.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Будет интересно Необходимые условия для выполнения параллельной работы трансформаторов

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Расчет импульсного трансформатора тороидального типа

Они отличаются меньшими весом и размерами, чем аналогичные устройства, например, трансформатора с сердечником броневого типа. Для тороидальных трансформаторов характерно лучшее охлаждение и высокий КПД. Периметр сердечника позволяет распределить проводник обмотки более равномерно, что способствует уменьшению влияния  поля рассеяния, благодаря этому отпадает необходимость создания экранирования импульсного трансформатора.

Для расчета тороидального импульсного трансформатора с целью ускорить процесс и исключить случайную ошибку используют специально разработанную таблицу. Она, кстати, явилась прототипом автоматической программной версии расчета. Использование табличного расчета позволяет ускорить процесс и дает представление обо всех происходящих в работе импульсного трансформатора процессах. Расчет аналогичен расчету ИТ с броневым и бронестержневым Ш-образным сердечником.

Рис. №1. Таблица основных расчетов тороидальных импульсных трансформаторов,

Где:

  • Рr — габаритная мощность;
  • w1 – число витков на вольт для сердечника из сталей марки Э310, Э320;
  • w2 – число витков на 1 вольт на стальной сердечник марки Э340; Э350; Э360;
  • S – площадь поперечного сечения провода;
  • Δ – разрешенная плотность тока в катушке;
  • η – КПД тр-ра.
Важно  Cибас жаренный целиком на сковороде

Первое действие проектирования импульсного трансформатора – выбор материала. Для большинства импульсных трансформаторов используется холоднокатаное стальное железо: Э310; Э320; Э380 с лентой толщиной до 0,5 мм. Если толщина ленты до 0,1 мм выбирается сталь Э340; Э350; Э360

Для намотки трансформаторов допускается использовать изоляцию снаружи и между обмоток. Изоляция, расположенная между слоями позволяет сделать укладку проводника ровным слоем, повышает толщину намотки в диаметре внутри сердечника.

Рис. №2.Форма конструкции сердечника тороидального импульсного трансформатора А – Магнитопроводный сердечник; С – Проводник для индуктивной связи.

Проводник должен быть выбран с высокой степенью прочности изоляции к механическим и электрическим воздействиям марок (ПЭЛШО; ПЭШО или провод ПЭВ-2). Для изоляции выбирается лакоткань, фторопластовая пленка (ПЭТФ) и батистовая лента.

Расчет импульсного трансформатора
Исходные параметры, необходимые для выполнения расчетов импульсных трансформаторов: Р2 (Вт) – импульсная мощность; U1 (В) – импульсное напряжение; Rи (Ом) – сопротивление источника; tи  (с) – время продолжительности импульса; fn (Гц) – частота движения импульсов; λ = 0,04 коэффициент искажения верхней, прямой части прямоугольного импульса

Пример расчета трансформатора

Если известно напряжение питания Uc = 220B; напряжение выхода Uв = 24В; Iн = 1,8А

действием определяем мощность «вторички»:
Р = Uв * Iн = 24 * 1,8 = 43,2 Вт

действие. Высчитывает габаритную мощность тр-ов:
Рг = Р/ η 43,2 / 0,92 = 48Вт; показатель КПД выбираем из табличного значения в ряду габаритных значений мощностей.

Рассчитываем   г /1,2 = 1,2 = 5,8см2
Выбираем габариты сердечника Dc; dc; hс
S = Dc – dc /2 * hс

Наиболее вероятный, приближенный тип сердечника – ОЛ50/80 – 40; площадь его сечения равна (8 – 5)/ 2 * 4 = 6 см2 (около расчетной)

Находим внутренний диаметр сердечника, здесь справедливо утверждение dc  ≥ d/с
d/с =  =  = 3,8 см, что означает 5  3,8,

Предположительно выбираем сердечник стали Э320, количество витков определяем, как:
w1 = 33.3/S = 33.3/6 = 5.55 витков на 1 вольт

Находим допустимое число витков «первички» и «вторички»:
W1-1 = w1 * Uс – 5.55 * 220 = 1221 виток; W1-2 = w1 * Uн = 5,55 * 24 = 133 витка.

Ввиду того, что в трансформаторах с тороидальным сердечником наблюдается малый магнитный поток рассеяния, падение напряжения в обмотках определяется с помощью активного сопротивления. Значение падения напряжения в катушках трансформатора тороидального типа  намного меньше, чем этот параметр для бронестержневых трансформаторов. Для того, чтобы компенсировать потери во вторичной обмотке увеличивают число витков на 3%.

W1-2 = 133 * 1,03 = 137 витков

Находим диаметр провода для обмотки
d1 = 1.33 , I1 – ток в «первичке» трансформатора, определяется по формуле: I1 = 1,1 (Pг/Uc) = 1,1 * 48/220 = 0,24а

d1 = 1,33  = 0,299мм

находим подходящий диаметр проводника, берем в сторону увеличения (0,31мм);

d2 – 1,33  = 1,19  = 0,8 мм.

Как намотать импульсный трансформатор

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый.

В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части.

То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT.

Вбиваем  нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления.

Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины.

Номинальное напряжение указывается для одной обмотки.

В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки.  Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет.  В ходе него я получил следующие параметры:

  •  Число витков первичной обмотки 38;
  • Число витков вторичной обмотки  10+10 двумя жилами указанного провода.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.

Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому.

Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48.  В первый слой я положил 35 витков.

Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.

Изолируем первичную обмотку от вторичной.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.
Важно  Красивые и прикольные поздравления с днем рождения студенту (другу, медику) своими словами

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Особенности намотки импульсных трансформаторов.

Намотка импульсных трансформаторов, а особенно трансформаторов на кольцевых и тороидальных магнитопроводах имеет некоторые особенности.

Дело в том, что если какая-либо обмотка трансформатора будет недостаточно равномерно распределена по периметру магнитопровода, то отдельные участки магнитопровода могут войти в насыщение, что может привести к существенному снижению мощности БП и даже привести к выходу его из строя.

Казалось бы, можно просто рассчитать расстояние между отдельными витками катушки так, чтобы витки обмотки уложились ровно в один или несколько слоёв. Но, на практике, мотать такую обмотку сложно и утомительно.

Мы же пытаемся мотать «ленивую обмотку». А в этом случае, проще всего намотать однослойную обмотку «виток к витку».

Что для этого нужно?

Нужно подобрать провод такого диаметра, чтобы он уложился «виток к витку», в один слой, в окно имеющегося кольцевого сердечника, да ещё и так, чтобы при этом число витков первичной обмотки не сильно отличалось от расчётного.

Если количество витков, полученное в калькуляторе, не будет отличаться более чем на 10-20% от количества, полученного в формуле для расчёта укладки, то можно смело мотать обмотку, не считая витков.

Правда, для такой намотки, скорее всего, понадобится выбрать магнитопровод с несколько завышенной габаритной мощностью, что я уже советовал выше.

1 – кольцевой сердечник.

2 — прокладка.

3 – витки обмотки.

D – диаметр по которому можно рассчитать периметр, занимаемый витками обмотки.

На картинке видно, что при намотке «виток к витку», расчетный периметр будет намного меньше, чем внутренний диаметр ферритового кольца. Это обусловлено и диаметром самого провода и толщиной прокладки.

На самом же деле, реальный периметр, который будет заполняться проводом, будет ещё меньше. Это связано с тем, что обмоточный провод не прилегает к внутренней поверхности кольца, образуя некоторый зазор. Причём, между диаметром провода и величиной этого зазора существует прямая зависимость.

Не стоит увеличивать натяжение провода при намотке с целью сократить этот зазор, так как при этом можно повредить изоляцию, да и сам провод.

По нижеприведённой эмпирической формуле можно рассчитать количество витков, исходя из диаметра имеющегося провода и диаметра окна сердечника.

Максимальная ошибка вычислений составляет примерно –5%+10% и зависит от плотности укладки провода.

w = π(D – 10S – 4d) / d, где:

w – число витков первичной обмотки,

π – 3,1416,

D – внутренний диаметр кольцевого магнитопровода,

S – толщина изолирующей прокладки,

d – диаметр провода с изоляцией,

– дробная черта.

Как измерить диаметр провода и определить толщину изоляции – рассказано .

Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Несколько примеров расчёта реальных трансформаторов.

● Мощность – 50 Ватт.

Магнитопровод – К28 х 16 х 9.

Провод – Ø0,35мм.

D = 16мм.

S = 0,1мм.

d = 0,39мм.

w= π (16 – 10*0,1 – 4*0,39) / 0,39 ≈ 108 (витков).

Реально поместилось – 114 витков.

● Мощность – 20 Ватт.

Магнитопровод – К28 х 16 х 9.

Провод – Ø0,23мм.

D = 16мм.

S = 0,1мм.

d = 0,25мм.

w = π (16 – 10*0,1 – 4*0,25) / 0,25 ≈ 176 (витков).

Реально поместилось – 176 витков.

● Мощность – 200 Ватт.

Магнитопровод – два кольца К38 х 24 х 7.

Провод – Ø1,0мм.

D = 24.

S = 0,1мм.

d = 1,07мм.

w = π (24 – 10*0,1 – 4*1,07) / 1,07 ≈ 55 (витков).

Реально поместилось 58 витков.

В практике радиолюбителя нечасто выпадает возможность выбрать диаметр обмоточного провода с необходимой точностью.

Если провод оказался слишком тонким для намотки «виток к витку», а так часто бывает при намотке вторичных обмоток, то всегда можно слегка растянуть обмотку, путём раздвигания витков. А если не хватает сечения провода, то обмотку можно намотать сразу в несколько проводов.

Как намотать импульсный трансформатор?

Вначале нужно подготовить ферритовое кольцо.

Для того чтобы провод не прорезал изоляционную прокладку, да и не повредился сам, желательно притупить острые кромки ферритового сердечника. Но, делать это не обязательно, особенно если провод тонкий или используется надёжная прокладка. Правда, я почему-то всегда это делаю.

При помощи наждачной бумаги скругляем наружные острые грани.

То же самое проделываем и с внутренними гранями кольца.

Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.

В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, лавсановую плёнку или даже бумагу.

При намотке крупных колец с использованием провода толще 1-2мм удобно использовать киперную ленту.

Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.

Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.

Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки.

Необходимую длину провода обмотки определить совсем просто. Достаточно измерить длину одного витка и перемножить это значение на необходимое количество витков. Небольшой припуск на выводы и погрешность вычисления тоже не помешает.

Пример

34(мм) * 120(витков) * 1,1(раз) = 4488(мм)

Если для обмотки используется провод тоньше, чем 0,1мм, то зачистка изоляции при помощи скальпеля может снизить надёжность трансформатора. Изоляцию такого провода лучше удалить при помощи паяльника и таблетки аспирина (ацетилсалициловой кислоты).

Важно  Анекдоты про нефтяников и нефть

Будьте осторожны! При плавлении ацетилсалициловой кислоты выделяются ядовитые пары!

Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.

Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.

Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).

Затем выводы вместе с трубкой нужно закрепить х/б нитью.

Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если предполагается использовать выпрямитель с нулевой точкой, то можно намотать вторичную обмотку в два провода. Это обеспечит полную симметрию обмоток. Витки вторичных обмоток также должны быть равномерно распределены по периметру сердечника. Особенно это касается наиболее мощных в плане отбора мощности обмоток. Вторичные обмотки, отбирающие небольшую, по сравнению с общей, мощность, можно мотать как попало.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.

На картинке вторичная обмотка, намотанная в четыре провода.

Вернуться наверх к меню.

Выявление межвиткового замыкания

Чтобы выявить такой дефект импульсного трансформатора, мультиметра недостаточно. Как минимум, понадобится еще хорошее зрение и внимательность. Для изоляции проволоки используется только ее лаковое покрытие. В случае пробоя изоляции остается сопротивление между расположенными рядом витками, и контактная область греется. Поэтому нужно убедиться в отсутствии подтеков, вспучивания, запаха гари, черноты, подгорания. После определения типа преобразователя можно увидеть в справочнике значение сопротивления его катушек. После этого следует тестером в функционале мегаомметра замерить сопротивление изоляции – между парами обмоток и отдельно между каждой из них и корпусом. Измерения осуществляются при напряжении, значащемся в техдокументации на преобразователь. Измеренные величины сравниваются со справочными, и в случае нестыковки на 50% или выше диагностируется неисправность обмотки.

Как рассчитать импульсный трансформатор

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил. Энергосистема опознала нового радиотехника и приветливо моргнула всем домом. Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами. При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус. Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой. И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД. Но самое главное – при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое. Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов. А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто – существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней – просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных – EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия. Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Оцените статью
Понравилась статья?
Комментарии (0)
Комментариев нет, будьте первым кто его оставит
Добавить комментарий
Ваш e-mail не будет опубликован. Обязательные поля помечены *