Без рубрики 'Управляем фарами при помощи Arduino

Управляем фарами при помощи Arduino

0 комментов
просмотров
19 мин. на чтение

Функция pinMode()

Но пойдем по порядку. Мы уже знаем из Урока 6 две основные функции void setup() и void loop(). Далее мы будем работать в них.

Для нашего урока нам нужна новая функция о которой мы пока не проходили — pinMode(). Эта функция сообщает Arduino выводить напряжение или измерять напряжение на цифровом выводе. Мы будем использовать эту новую функцию именно в void setup(), т.к. наша новая функция относится к настройкам.

Функция pinMode() принимает два аргумента. Аргументы — это информация, необходимая функции для выполнения своей задачи. Они помещаются в скобки функции и разделяются запятой.

  • Первый аргумент функции pinMode() — это номер пина, т.е. 13 в нашем примере (см. схему выше).
  • Второй аргумент устанавливает режим ввода или вывода. В примере выше — вывод.

Используйте OUTPUT, если вы хотите вывести напряжение, и используйте INPUT, если вы хотите прочитать напряжение.

Мы собирались использовать режим OUTPUT, так как мы хотим отправить ток на светодиод.

Шаг 6. H-мост (модуль LM 298)

Термин H-мост (англ. H-bridge) выведен из типичного графического представления такой схемы. Это схема, которая может приводить двигатель постоянного тока в прямом и обратном направлении, см. рисунок выше для понимания работы H-моста.

Он состоит из 4 электронных переключателей S1, S2, S3 и S4 (транзисторы / МОП-транзисторы (MOSFET) / IGBTS). Когда переключатели S1 и S4 замкнуты (а S2 и S3 разомкнуты), на двигатель идет положительное напряжение. Поэтому он вращается в прямом направлении. Аналогично, когда S2 и S3 замкнуты, а S1 и S4 открыты, обратное напряжение идет через двигатель, поэтому он вращается в обратном направлении.

Примечание. Переключатели в одном и том же плече (S1, S2 или S3, S4) никогда не замыкаются в одно и то же время, это приведет к короткому замыканию.

H-мосты доступны в виде интегральных микросхем, или вы можете создать свой собственный, используя 4 обычных транзистора или полевых транзистора (MOSFET). В нашем случае мы используем микросхему H-моста LM298, которая позволяет контролировать скорость и направление вращения двигателей. Ниже перейдем к описанию пинов:

Выход 1: двигатель постоянного тока 1 «+» или шаговый двигатель A+

Выход 2: двигатель постоянного тока 1 «-» или шаговый двигатель A-

Выход 3: двигатель постоянного тока 2 «+» или шаговый двигатель B+

Выход 4: двигатель B выведен

12В контакт: 12В вход, но вы можете использовать от 7 до 35 В

GND: земля

Вывод 5В: выход 5 В, если перемычка 12 В на месте, идеально подходит для питания вашего Arduino

EnA: включает сигнал ШИМ для двигателя А

IN1: включить двигатель A

IN2: включить двигатель A

IN3: включить двигатель B

IN4: включить двигатель B

EnB: включает сигнал ШИМ для двигателя B

Помехи и защита от них

Индуктивный выброс напряжения

Мотор – это индуктивная нагрузка, которая в момент отключения создаёт индуктивные выбросы. У мотора есть щетки, которые являются источником искр и помех за счёт той же самой индуктивности катушки. Сам мотор потребляет энергию не очень равномерно, что может стать причиной помех по линии питания, а пусковой ток мотора так вообще сильно больше рабочего тока, что гарантированно просадит слабое питание при запуске. Все четыре источника помех могут приводить к различным глюкам в работе устройства вплоть до срабатывания кнопок на цифровых пинах, наведения помех на аналоговых пинах, внезапного зависания и даже перезагрузки микроконтроллера или других железок в сборе устройства.

Отсечь индуктивный выброс с мотора можно при помощи самого обычного диода, чем мощнее мотор, тем мощнее нужен диод, то есть на более высокое напряжение и ток. Диод ставится встречно параллельно мотору, и чем ближе к корпусу, тем лучше. Точно таким же образом рекомендуется поступать с электромагнитными клапанами, соленоидами, электромагнитами и вообще любыми другими катушками. Логично, что диод нужно ставить только в том случае, если мотор или катушка управляется в одну сторону. Важные моменты:

  • При работе с драйвером и управлением в обе стороны диод ставить не нужно и даже нельзя!
  • При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx ) или диоды Шоттки (например серии 1N58xx).
  • Максимальный ток диода должен быть больше или равен максимальному току мотора.
  • Защитный диод, принимающий на себя обратный выброс ЭДС самоиндукции, также называется шунтирующим диодом, снаббером, flyback диодом.
  • В природе существуют мосфеты со встроенным защитным диодом. Этот диод является отдельным элементом и такой мосфет обычно имеет нестандартный корпус, читайте документацию на конкретный транзистор.
  • Диод, который показан на схематическом изображении мосфета, не является защитным диодом: это слабый и медленный “паразитный” диод, образованный при производстве транзистора. Он не защитит мосфет от выброса, нужно обязательно ставить внешний!

Помехи от щёток

Искрящиеся щетки мотора, особенно старого и разбитого, являются сильным источником электромагнитных помех, и здесь проблема решается установкой керамических конденсаторов с ёмкостью 0.1-1 мкФ на выводы мотора. Такие же конденсаторы можно поставить между каждым выводом и металлическим корпусом, это ещё сильнее погасит помехи. Для пайки к корпусу нужно использовать мощный паяльник и активный флюс, чтобы залудиться и припаяться как можно быстрее, не перегревая мотор.

Помехи по питанию, просадка

Мотор потребляет ток не очень равномерно, особенно во время разгона или в условиях переменной нагрузки на вал, что проявляется в виде просадок напряжения по питанию всей схемы. Беды с питанием решаются установкой ёмких электролитических конденсаторов по питанию, логично что ставить их нужно максимально близко к драйверу, то есть до драйвера. Напряжение должно быть выше чем напряжение питания, а ёмкость уже подбирается по факту. Начать можно с 470 мкф и повышать, пока не станет хорошо.

Разделение питания

Если описанные выше способы не помогают – остаётся только одно: разделение питания. Отдельный малошумящий хороший источник на МК и сенсоры/модули, и отдельный – для силовой части, в том числе мотора. Иногда ради стабильности работы приходится вводить отдельный БП или отдельный аккумулятор для надёжности функционирования устройства.

Экранирование

В отдельных случаях критичными являются даже наводки от питающих проводов моторов, особенно при управлении ШИМ мощными моторами и управлении мощными шаговиками в станках. Такие наводки могут создавать сильные помехи для работающих рядом чувствительных электронных компонентов, на аналоговые цепи, наводить помехи на линии измерения АЦП и конечно же на радиосвязь. Защититься от таких помех можно при помощи экранирования силовых проводов: экранированные силовые провода не всегда удаётся купить, поэтому достаточно обмотать обычные провода фольгой и подключить экран на GND питания силовой части. Этот трюк часто используют RC моделисты, летающие по FPV.

Важно  Красивые и прикольные поздравления на 4 месяца отношений парню, девушке, любимой, любимому

Управление Ардуино через компьютер

Функция Serial.available() получает количество байт доступных для чтения из последовательного порта. Это те байты которые отправлены с компьютера и записаны в буфер последовательного порта. Буфер Serial monitor Arduino может хранить максимум до 64 байт. Функция используется также при взаимодействии Bluetooth модуля к Ардуино и полезна при отладке устройства на этапе проектирования.

При тестировании и настройке различных устройств, управляемых через Bluetooth, например, роботом или Лодкой на Ардуино вам пригодится знание, как управлять светодиодом и сервомотором через компьютер. Поэтому рассмотрим сейчас простое управление сервоприводом через компьютер по USB кабелю. При этом через монитор можно отправлять не только цифры, но и буквы латинского алфавита.

Радиоуправление на Arduino

Соберем радиоуправление на основе Arduino Uno и радиомодуля MX-05v. Этот модуль работает на частоте 443 МГц, что позволяет использовать его под водой (волны в диапазоне 2.4 ГГц не проникают под воду). Потом поставим его на модель Радиоуправляемой Подводной Лодки.

Радиомодуль MX-05V + MX-FS-03V подкупает своей низкой ценой – около 60 рублей за пару. Заявленной дальности связи 20-200 метров хватает для небольших моделей машин или лодок.

Сделаем одноканальную аппаратуду. Для этого нам понадобятся:

  • 2 платы Ардуино для приемника и передатчика
  • комплект радиомодуля MX-05V + MX-FS-03V
  • переменный резистор или джойстик для передатчика
  • рулевая машинка (серва) для приемника

Суть работы программы заключается в следующем:

  • считываем значение с переменного резистора (число от 0 до 1023)
  • переводим это число в 2 байта (16 бит, т.к. 1023 занимает 10 бит и не поместится в один байт)
  • передаем по радио-каналу
  • приемник принимает 2 байта по радио каналу
  • переводит их обратно в число от 0 до 1023
  • передает команду серво-машинке

Принцип работы Arduino доступно описан на разных веб-ресурсах. Мне понравился бесплатный обучающий онлайн курс «Строим роботов и другие устройства на Arduino». Рекомендую.

Загружаем текс программы (скетч) для передатчика и приемников. Кстати, программы надо хранить в разных папках, иначе во время компиляции они будут сливаться в один файл и конфликтовать из-за дублирования функций setup и loop. Как подключить сторонние библиотеки к Arduino описано например тут.

Передатчик

// Библиотека передатчика
#include void setup() { // Запуск передатчика vw_set_ptt_inverted(true); vw_setup(1000); // Bits per sec } void loop() { // чтение показаний с переменного резистора int sensorValue = analogRead(A0); // отправляем значение send(sensorValue); } void send(int param) { // конвертируем int в массив из 2 байт uint8_t msg; int len = 2; msg = highByte(param); msg = lowByte(param); // отправляем непосредственно в радиоканал vw_send(msg, len); // ждем пока сообщение не уйдет целиком vw_wait_tx(); }

Приемник

// Библиотека для приемника
#include // Библиотека для серво машинки. В отличии от обычной Servo.h не конфликтует с VirtualWire.h
// Скачать библиотеку можно тут. // http://en.osdn.jp/projects/sfnet_pgahtow/downloads/Arduino%20(v1.0)%20libaries/ServoTimer2.zip/
// Надо закомментировать 41 строчку в файле ServoTimer2.

h в случае ошибки компиляции
// ‘typedef uint8_t boolean;’
#include // Создаем объект серво-машинки
ServoTimer2 myservo; void setup() { // для отладки // Serial.begin(9600); // Запуск приемника vw_set_ptt_inverted(true); vw_setup(1000); // бит в секунду vw_rx_start(); // запуск приемника // подключаем серво к 6 пину myservo.

attach(6);
} void loop() { uint8_t msg; uint8_t len = 2; if (vw_get_message(msg, &len)) { // переводим байты в int int value = word(msg, msg); // подгоняем под диапазон входных данных сервы int sValue = map(value, 0, 1023, 600, 2400); myservo.write(sValue); // Serial.

println(sValue); }
}

И в итоге – ничего не работает! Почему?

Питание

Радиомодуль MX-05V очень простой, из-за этого он очень восприимчив к внешним помехам. И даже такой маленький мотор как в серво-машинке способен нарушить его работу.

Для того, чтобы минимизировать влияние электромотора (это касается только колекторных моторов), нужно разделить питание силовой части от приемника. При этом «минус» у них должен быть общий.

Итоговая схема подключения приемника выглядит так.

Результат

Данные радиомодуль слишком восприимчив к помехам, и управлять летательной техникой на нем нельзя. Но для игрушечной машинки или лодки вполне подойдет.

Необходимые компоненты

Драйвер мотора L293D

L293D представляет собой микросхему драйвера мотора (motor driver), имеющую в своем составе 2 канала для управления двумя двигателями. Микросхема L293D имеет две транзисторные пары Дарлингтона для усиления и раздельного управления мощностью двигателей, подключаемых к ее выходам.

Инфракрасный модуль

Инфракрасный модуль представляет собой датчик, включающий пару инфракрасных светодиода/фотодиода, потенциометр, компаратор LM358, резисторы и светодиод. Инфракрасный светодиод излучает инфракрасный свет, а фотодиод его принимает.

Также в схему добавлен регулятор напряжения на 5 В, а питание устройства осуществляется от батарейки 9 В.

Что такое бегущая строка на Ардуино

Бегущая строка на Ардуино – электронное изделие, в основе которого лежит микроконтроллер Arduino. Рабочая область прибора покрыта светодиодами. Основное предназначение – транслирование изображения и текстовых сообщений. Данные могут быть статичными и анимированными.

Световые строки создаются с помощью модулей. Размер по умолчанию – 32х16 см. Область, предназначенная под рабочую поверхность, напрямую зависит отношению количеству модулей и их размеру.

Кроме того, в строку вставлен контроллер, роль которого – управление картинкой. Устройство работает в автономном режиме. Чтобы изменить текстовое послание или изображение, бегущую строку подключают к компьютеру. Профиль из алюминия держит всю конструкцию.

По цветовой гамме различают 2 вида бегущей строки на Arduino:

  1. Монохромный или одноцветный.
  2. Разные оттенки – обычно 8 цветов, здесь также включен черный фон.

Больше всего люди предпочитают красный оттенок, так как он наиболее насыщенный. Также не менее популярен белый цвет. Если белые огоньки ярко пылают на черном фоне, текст выглядит более аккуратно.

Важно  Как сделать регулируемые сварочные магниты

Все данные пользователь помещает в память микроконтроллера. Для обновления картинки или строки существует несколько методов:

  1. Базовый – через USB-кабель. Микропроцессор Ардуино подключается через USB-порт к компьютерному устройству. С компьютера разработчик переносит свой программный код в память микропроцессора.
  2. По сети через Лан-кабель. Способ предусмотрен для тех пользователей, которые постоянно обновляют электронную строку. Техника подключения аналогична предыдущему пункту.

По типу различают бегущие доски, сделанные для интерьера и применения на улице. Уличные часто защищены специальным козырьком, чтобы на светодиоды не попала дождевая вода.

Исходный код

Осталось написать простой код для нашего реле Ардуино и протестировать модуль на то, как он будет работать. Сам код достаточно простой, мы будем просто использовать контакт 7 для управления реле, поэтому мы определим его как выход и создадим программу, которая будет просто активировать и деактивировать реле каждые 3 секунды. Здесь я еще раз упомяну, что вход модуля работает обратно, поэтому низкий логический уровень на входе фактически активирует реле, и наоборот.

int in1 = 7;

void setup() {
  pinMode(in1, OUTPUT);
  digitalWrite(in1, HIGH);
}

void loop() {
  digitalWrite(in1, LOW);
  delay(3000);
  digitalWrite(in1, HIGH);
  delay(3000);
}

Были протестирована 3 устройства на основе данного примера. Сначала лампочка мощностью 100 Вт, затем настольная лампа и тепловентилятор. Все эти устройства работают на 220В. Таким образом возможно управлять любым высоковольтным устройством с помощью Arduino или любого другого микроконтроллера. И, конечно, возможности безграничны, например, мы можем управлять устройствами с помощью пульта дистанционного управления телевизора, Bluetooth, SMS, Интернета и так далее.

Управление щёточными моторами с Arduino

Как вы знаете, никакую нагрузку мощнее светодиода нельзя подключать к Ардуино напрямую, особенно моторчики. Ардуино, да и вообще любой микроконтроллер – логическое устройство, которое может давать только логические сигналы другим железкам, а те уже могут управлять нагрузкой. Кстати, урок по управлению мощной нагрузкой постоянного и переменного тока у меня тоже есть. “Драйвером” мотора могут быть разные железки, рассмотрим некоторые из них.

При помощи обычного реле можно просто включать и выключать мотор по команде digitalWrite(пин, состояние) , прямо как светодиод:

При помощи двойного модуля реле (или просто двух реле) можно включать мотор в одну или другую сторону, а также выключать:

Купить модуль реле можно на Aliexpress.

Мосфет

Полевой транзистор, он же мосфет, позволяет управлять скорость вращения мотора при помощи ШИМ сигнала. При использовании мосфета обязательно нужно ставить диод, иначе индуктивный выброс с мотора очень быстро убьёт транзистор. Скорость мотора можно задавать при помощи ардуиновской analogWrite(пин, скорость) .

Вместо “голого” мосфета можно использовать готовый китайский модуль:

Купить мосфет модуль можно на Aliexpress.

Реле и мосфет

Если объединить реле и мосфет – получим весьма колхозную, но рабочую схему управления скоростью и направлением мотора:

Специальный драйвер

Лучше всего управлять мотором при помощи специального драйвера, они бывают разных форм и размеров и рассчитаны на разное напряжение и ток, но управляются практически одинаково. Рассмотрим основные драйверы с китайского рынка:

Драйвер Vmot Ток (пик)

Стоимость

Aliexpress
L298N 4-50V 1A (2A) 100р Купить
MX1508 2-9.6V 1.5A (2.5A) 20р Купить
TA6586 3-14V 5A (7A) 100р (чип 30р) Купить, купить, купить чип
L9110S 2.5-12V 0.8A (1.5A) 50р Купить
TB6612 4.5-13.5V 1.2A (3A) 80р Купить
BTS7960 5.5-27V 10A (43A) 300р Купить
Большой 3-36V 10A (30A) 700р Купить

Остальные драйверы смотри у меня вот тут. Схемы подключения и таблицы управления:

Пины направления управляются при помощи digitalWrite(pin, value) , а PWM – analogWrite(pin, value) . Управление драйвером по двум пинам может быть двух вариантов:

Управление щёточными моторами с Arduino

Как вы знаете, никакую нагрузку мощнее светодиода нельзя подключать к Ардуино напрямую, особенно моторчики. Ардуино, да и вообще любой микроконтроллер – логическое устройство, которое может давать только логические сигналы другим железкам, а те уже могут управлять нагрузкой. Кстати, урок по управлению мощной нагрузкой постоянного и переменного тока у меня тоже есть. “Драйвером” мотора могут быть разные железки, рассмотрим некоторые из них.

При помощи обычного реле можно просто включать и выключать мотор по команде digitalWrite(пин, состояние) , прямо как светодиод:

При помощи двойного модуля реле (или просто двух реле) можно включать мотор в одну или другую сторону, а также выключать:

Купить модуль реле можно на Aliexpress.

Мосфет

Полевой транзистор, он же мосфет, позволяет управлять скорость вращения мотора при помощи ШИМ сигнала. При использовании мосфета обязательно нужно ставить диод, иначе индуктивный выброс с мотора очень быстро убьёт транзистор. Скорость мотора можно задавать при помощи ардуиновской analogWrite(пин, скорость) .

Вместо “голого” мосфета можно использовать готовый китайский модуль:

Купить мосфет модуль можно на Aliexpress.

Реле и мосфет

Если объединить реле и мосфет – получим весьма колхозную, но рабочую схему управления скоростью и направлением мотора:

Специальный драйвер

Лучше всего управлять мотором при помощи специального драйвера, они бывают разных форм и размеров и рассчитаны на разное напряжение и ток, но управляются практически одинаково. Рассмотрим основные драйверы с китайского рынка:

Драйвер Vmot Ток (пик)

Стоимость

Aliexpress
L298N 4-50V 1A (2A) 100р Купить
MX1508 2-9.6V 1.5A (2.5A) 20р Купить
TA6586 3-14V 5A (7A) 100р (чип 30р) Купить, купить, купить чип
L9110S 2.5-12V 0.8A (1.5A) 50р Купить
TB6612 4.5-13.5V 1.2A (3A) 80р Купить
BTS7960 5.5-27V 10A (43A) 300р Купить
Большой 3-36V 10A (30A) 700р Купить

Остальные драйверы смотри у меня вот тут. Схемы подключения и таблицы управления:

Пины направления управляются при помощи digitalWrite(pin, value) , а PWM – analogWrite(pin, value) . Управление драйвером по двум пинам может быть двух вариантов:

Что такое Arduino

Arduino — это платформа для создания электроники своими руками. К печатной плате, которая является миниатюрным компьютером, можно подсоединять различные компоненты, например датчики, экраны, переключатели. Или даже другие платы со своими функциями.

В Arduino можно загрузить программу (скетч), чтобы добиться определённого результата. Скажем, включать свет, когда на датчик поступает сигнал, или запускать мотор и ехать в нужном направлении.

Важно  Красивые поздравления с рождеством в стихах

Вот из чего состоит конструктор Arduino.

Основа

«Мозг» любого конструктора Arduino — это собственно одноимённая плата. На ней есть процессор, модули памяти и порты ввода‑вывода, к которым подключаются другие компоненты.

Самая популярная плата для начинающих — Arduino Uno. На ней 14 цифровых и 6 аналоговых входов, 32 КБ постоянной и 2 КБ оперативной памяти, процессор частотой 16 МГц, порт USB. Не сравнить с современными смартфонами и компьютерами, но для знакомства с конструктором и создания простых систем этого вполне достаточно.

Arduino Nano и Mini — одни из самых компактных в линейке. Nano аналогична Uno по производительности, Mini немного слабее. В Arduino Leonardo установлен новый контроллер (процессор) и вместо USB‑порта используется microUSB.

Фото: AlexCorv/Shutterstock

Если же вы заранее знаете, что на простых экспериментах не остановитесь, можно сразу смотреть в сторону плат побольше, например Arduino Mega. Здесь будет уже 54 цифровых выхода и 16 аналоговых, 256 КБ постоянной и 8 КБ оперативной памяти, а также процессор частотой 16 МГц и порт USB.

Конструктор постоянно развивается, появляются новые версии платформы — с более производительными микроконтроллерами, большим объёмом памяти, расширенным набором портов, дополнительными компонентами вроде Bluetooth или Wi‑Fi.

Обратите внимание: блока питания на плате нет, к розетке вы её не подключите. Электроэнергию можно подавать либо через порт USB/microUSB от компьютера или внешнего аккумулятора, либо на разъём Vin или 5V (плюс на Gnd — «земля») на плате (они промаркированы) — например, от батареи или блока питания для ПК

Дополнительные элементы

Фото: Schlyx/Depositphotos

Чтобы платформа Arduino не просто выполняла вычисления, а давала какие‑то наглядные и полезные результаты работы, к ней нужно подключить «обвес». Это могут быть:

  • Датчики. Они принимают информацию и передают её плате, бывают цифровыми и аналоговыми. К примеру, для Arduino есть датчики света, цвета, температуры, давления, влажности, уровня воды и другие. Выпускаются и более сложные сенсоры. Например, датчики препятствия и расстояния часто используют для создания управляемых роботов и машинок.
  • Светодиоды — самые простые элементы, которые покажут результат работы Arduino. Загорелся светодиод — что‑то произошло, например получили определённый сигнал с датчика.
  • Моторы и другие приводы. Они нужны для того, чтобы привести в движение части вашей конструкции: заставить колёса машины крутиться, а робота — шагать.
  • Экраны. Используются для вывода информации. Обычно это небольшие чёрно‑белые LCD‑дисплеи для пары строк текста, но есть и компактные цветные TFT‑экраны разрешением до 240 × 320 точек и диагональю до 3 дюймов.
  • Кнопки и переключатели. Позволяют управлять работой устройства на базе Arduino: включать и выключать его, задавать определённые сценарии поведения.
  • Резисторы. Нужны, чтобы менять яркость свечения светодиодов или создавать особые электрические схемы.
  • Потенциометры — резисторы с переменным сопротивлением. Их обычно используют, чтобы управлять напряжением, яркостью светодиодов, громкостью звуков и так далее.
  • Провода, перемычки и макетная плата. Нужны для простой сборки вашего Arduino без пайки. Достаточно вставлять ножки резисторов, коннекторов, проводников и других деталей в отверстия на плате. Так быстрее, безопаснее и легче — разберётся даже ребёнок.

Платы расширения

Фото: Baladapat/Depositphotos

Такие платы, которые иногда называют шилдами (Shield), расширяют возможности Arduino. Они устанавливаются на платформу или друг на друга по принципу бутерброда.

Назначение плат обычно отражено в названии. Например, Ethernet Shield позволяет подключить систему к сети Ethernet, GPRS Shield — к мобильной сети. Для управления мощными моторами выпускается Motor Shield, для работы Arduino от бытовой электросети напряжением 220 вольт — AC/DC Shield.

Как использовать релейный модуль с устройствами высокого напряжения

Сначала давайте посмотрим на принципиальную схему. Как описано ранее, мы будем использовать адаптер 5 В в качестве отдельного источника питания для электромагнита, подключенного к JDVcc и заземляющему выводу. Вывод Arduino 5V будет подключен к выводу Vcc модуля, а вывод 7 к входному выводу In1 для управления реле. Теперь для части «высокое напряжение» нам понадобится вилка, розетка и кабель с двумя проводами. Один из двух проводов будет обрезан и подключен к общему и нормально разомкнутому контакту выходного разъема модуля. Таким образом, в этой конфигурации, когда мы активируем реле, мы получим замкнутую и рабочую высоковольтную цепь.

Ниже коснемся того, как сделать кабель. Нам нужны вилка, розетка и кабель. Аккуратно обрезаем кабель и обрезаем один из проводов, как показано на рисунке ниже. Подключаем их к нормально разомкнутым контактам релейного модуля. Также подключаем концы кабеля к вилке и розетке.

Примечание! Убедитесь, что вы используете другие провода, а не желтый и зеленый, так как они предназначены для заземления.

Окончательный вид кабеля, готового к использованию, ниже. Прежде чем использовать кабель, убедитесь, что он работает правильно. Вы можете проверить это с помощью мультиметра или сначала проверить его при низком напряжении.

Модуль реле HL-52S для Ардуино

В качестве примера для этого урока по реле Arduino мы будем использовать 2-канальный релейный модуль HL-52S, который имеет 2 реле с номиналами 10 А при 250 и 125 В переменного тока и 10 А при 30 и 28 В постоянного тока. Выходной разъем высокого напряжения имеет 3 контакта, средний является общим контактом, и, как видно из маркировки, один из двух других контактов предназначен для нормально разомкнутого соединения, а другой — для нормально замкнутого соединения.

На одной из сторон модуля у нас есть 2 набора контактов. Первый имеет 4 контакта, заземление и контакт VCC для питания модуля и 2 входных контакта In1 и In2. Второй набор контактов имеет 3 контакта с перемычкой между JDVcc и контактом Vcc.

Внимание! При такой конфигурации электромагнит реле получает питание напрямую от платы Arduino, и если что-то пойдет не так с реле, микроконтроллер может быть поврежден.

Оцените статью
Понравилась статья?
Комментарии (0)
Комментариев нет, будьте первым кто его оставит
Добавить комментарий
Ваш e-mail не будет опубликован. Обязательные поля помечены *