Без рубрики 'Более 350 схем со светодиодами, лазерными диодами и ЖКИ + теория

Более 350 схем со светодиодами, лазерными диодами и ЖКИ + теория

0 комментов
просмотр
20 мин. на чтение

Первый вариант сборки

В данной ситуации необходимо использовать следующую схему сборки устройства на основе лазерного диода, извлеченного из DVD-RW привода.

Схема сборки

Минусом такой схемы является наличие ситуации проседания напряжения аккумулятора в момент разрядки, что вызывает линейное падение степени яркости лазера.
Чтобы собрать лазерную установку по приведенной схеме, нужен не только диод, но и конденсаторы с любым напряжением (от 3В). На схеме они отмечен значком C1 и С2. Емкость первого конденсатора должна быть 0,1 мкФ, а второго – 100 мкФ. Они защитят диод от статического электричества, а также обеспечат плавный переход процессов. Когда конденсаторы были подсоединены к лазерному источнику света, с выводом можно будет снять проволоку. При соединении к диоду один из выводов на корпус будет подавать минус. В тоже время второй вывод будет плюсом, а третий – не применяется. Расположение плюсов достаточно хорошо показано на второй схеме, которая будет описана ниже.
Стоит знать, что на корпус некоторых диодов подается плюс (например, у 808нм лд). Для сдвоенных моделей характерно наличие среднего вывода для общего минуса (G), а крайний – C для питания DVD, CD, D.
Запитать такую схему можно от мобильного аккумулятора или 3 аккумулятора АА.

При этом ток также может иметь отличные значения. К примеру, при соответствующих скоростях записи DVD-RW привода, лазерный диод может иметь следующие значения таких параметров, как мощность и ток:

  • при скорости 16 мощность составит 200мВт, а ток — 250-260мА;
  • при скорости 18 мощность составит 200мВт, а ток — 300-350мА;
  • при скорости 20 мощность составит 270мВт, а ток — 400-450мА;
  • при скорости 22 мощность составит 300мВт, а ток — 450-500мА;
  • при скорости 24 мощность составит 300мВт, а ток — 450-500мА.

Инфракрасный диод

Инфракрасный диод CD-RW привода будет иметь мощность в 100-200мВт. Для сравнения, фиолетовый в BLU-RAY RW — от 60 до 150мВт, а в не пишущих моделях -15 мВт.Перед сборкой данной схемы, при использовании лазерного диода DVD привода, необходимо узнать, какое сопротивление требуется для резистора R1. Для этого можно использовать формулу R1=(Uвх.-Uпад.)/I , в которой:

  • Uвх. – напряжение, идущее от аккумулятора;
  • Uпад. — падение напряжения, которое принимает диод. Красный диод должен примерно иметь Uпад. равное 3 В. Такое напряжение пойдет для маломощного не пишущего DVD привода. Для инфракрасного диода Uпад. составит примерно 1,9 В, а для фиолетового или синего – 5,5 В и 4-4,4 В соответственно;
  • I — сила тока. Ее можно узнать из специальной таблицы.

При сборке лазера многие специалисты рекомендуют использовать резисторы большего сопротивления, чем получилось при расчетах. Это позволит защитить полупроводник от тока чрезмерного значения. Используя мультиметр, далее можно будет уменьшить сопротивление.

Особенности подключения RGB и COB светодиодов

Светодиоды с аббревиатурой RGB – это полихромные или многоцветные излучатели света разных цветов. Большинство из них собираются из трех светодиодных кристаллов, каждый из которых излучает свой цвет. Такая сборка называется цветовая триада.

Подключение RGB-светодиода производят так же, как и обычных светодиодов. В каждом корпусе такого многоцветного источника света располагаются по одному кристаллу: Red – красный, Green – зеленый и Blue – синий. Каждому светодиоду соответствует свое рабочее напряжение:

  • синему – от 2,5 до 3,7 В;
  • зеленому – от 2,2 до 3,5 В;
  • красному – от 1,6 до 2,03 В.

Кристаллы могут быть соединены между собой по-разному:

  • с общим катодом, т. е. три катода соединены между собой и с общим выводом на корпусе, а аноды – каждый имеет свой вывод;
  • с общим анодом – соответственно для всех анодов вывод общий, а катоды – индивидуальные;
  • независимая цоколевка – каждый анод и катод имеет собственный вывод.

Поэтому номиналы токоограничивающих резисторов будут разными.

Соединение кристаллов RGB-светодиода по схеме с общим катодом.

Соединение «с общим анодом».

В обоих случаях корпус диода имеет по 4 проволочных вывода, контактных площадок в SMD-светодиодах или штырька в корпусе «пиранья».

В случае с независимыми светодиодами выводов будет 6.

В корпусе SMD 5050 кристаллы-светодиоды располагают так:

В корпусе многоцветного 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов помните – каждому цвету соответствует свое напряжение диода.

Подключение светодиодов типа COB

Аббревиатура COB – это первые буквы английского словосочетания chip-on-board. По-русски это будет – элемент или кристалл на плате.

Кристаллы клеят или паяют на теплопроводящую подложку из сапфира или кремния. После проверки правильности электрических соединений, кристаллы заливают желтым люминофором.

Светодиоды типа COB – это матричные конструкции, состоящие из десятков или сотен кристаллов, которые соединены группами с комбинированным включением полупроводниковых p-n-переходов. Группы – это последовательные цепочки светодиодов, количество которых соответствует напряжению питания светодиодной матрицы. Например, при 9 В это 3 кристалла, 12 В – 4.

Цепочки с последовательным включением соединяют параллельно. Таким образом набирают требуемую мощность матрицы. Кристаллы синего свечения заливают желтым люминофором. Он переизлучает синий свет в желтый, получая белый.

Качество света, т. е. цветопередачу регулируют в процессе производства составом люминофора. Одно- и двухкомпонентный люминофор дает невысокое качество, т. к. имеет в спектре 2-3 линии излучения. Трех- и пятикомпонентный – вполне приемлемую цветопередачу. Она может быть до 85-90 Ra и даже выше.

Подключение этого вида излучателей света не вызывает проблем. Их включают как обычный мощный светодиод, питаемый источником тока стандартного номинала. Например, 150, 300, 700 мА. Производитель СОВ-матриц рекомендует выбирать источники тока с запасом. Он поможет при запуске светильника с COB-матрицей в эксплуатацию.

Виды лазерных диодов

За годы развития устройство лазерного диода претерпело множество изменений. Его конструкция совершенствовалась, во многом благодаря появлению высокотехнологичного оборудования. Высочайшая точность легирования и полировки полупроводникового кристалла, а также создание гетероструктурной модели – факторы, которые обеспечили высокий коэффициент отражения на границе «кристалл-воздух» и формирование когерентного излучения.

Первый лазерный диод (диод с гомоструктурой) имел один p-n переход и мог работать исключительно в импульсном режиме из-за быстрого перегрева кристалла. Он имеет лишь историческое значение и не применяется на практике.

Более эффективным оказался лазерный диод с двойной гетероструктурой (диод ДГС). Его кристалл создан на основе двух гетероструктур. Каждая гетероструктура – это материал (арсенид галлия и арсенид алюминия-галлия) с малой шириной запрещённой зоны, который расположен между слоями с большей шириной запрещенной зоны. Преимущество лазерного диода ДГС состоит в существенном увеличении концентрации разнополярных носителей в тонком слое, что значительно ускоряет проявление положительной обратной связи. К тому же отражение фотонов от гетеропереходов ведёт к снижению их концентрации в области низкого усиления, а значит, повышает эффективность всего устройства.

Лазерный диод с квантовыми ямами устроен по принципу диода ДГС, но с более тонкой активной областью. Это означает, что элементарные частицы, попадая в такую потенциальную яму, начинают двигаться в одной плоскости. Эффект квантования в данном случае заменяет потенциальный барьер и служит генератором излучения.

Важно  Включение лампы освещения кнопкой без фиксации

Недостаточная эффективность удержания светового потока в диодах ДГС привела к созданию гетероструктурного лазера с раздельным удержанием. В этой модели кристалл дополнительно покрывается слоем материала с каждой из сторон. Несмотря на меньший коэффициент преломления этих слоёв, они уверенно удерживают частицы, выступая в роли световода. Технология SCH занимает лидирующую позицию в производстве диодных лазеров.

Лазерный диод с распределённой обратной связью (РОС) является частью оптического оборудования в сфере построения телекоммуникационных систем. Длина волны РОС лазера является константой, что достигается путем нанесения поперечной насечки на полупроводник в области p-n-перехода. Насечка выполняет функцию дифракционной решётки, тем самым возвращая в резонатор фотоны только с одной (заданной) длиной волны. Эти когерентные фотоны и участвуют в усилении.

Поверхностно-излучающий лазерный диод с вертикальным резонатором или вертикально-излучающий лазер ВИЛ (англ. – VCSEL) в отличие от ранее рассмотренных приборов испускает луч света перпендикулярно поверхности кристалла. В основе конструкции VCSEL лежит метод использования вертикальных оптических микрорезонаторов с зеркалами, а также достижения метода ДГС и квантовой ямы. Преимущество технологии VCSEL состоит в температурной и радиационной стабильности, в возможности группового производства кристаллов и их тестирования непосредственно на стадии изготовления.

Модификацией VCSEL является ВИЛ с внешним резонатором (англ. – VECSEL). Оба лазерных диода позиционируются как приборы высокого быстродействия с возможностью обеспечения передачи данных в будущем на скорости до 25 Гбит/с через волоконно-оптическую связь.

BF245 2N3906

Lux Review Europe

Изобретатель синего светодиода, доктор Сюдзи Накамура (Shuji Nakamura), считает, что лазерные диоды имеют существенные преимущества перед светодиодами, и будущее светотехники именно за ними.

Доктор Сюдзи Накамура рассказывает о светодиодах и лазерной
технологии на выставке LuxLive в Лондоне. «Лазерные диоды –
это будущее освещения», – говорит он.

Недавно он представил новую компанию, созданную для коммерциализации технологии и привлечения внимания индустрии освещения к потенциалу лазерных источников света.

Лауреат Нобелевской премии Накамура, создатель как зеленого, так синего и светодиодов, последний из которых дал толчок так называемой светодиодной революции, стал одним из соучредителей компании SoraaLaser, публично дебютировавшей на проводившейся в Калифорнии конференции Strategies in Light.

Компания продемонстрировала свои самые новаторские источники света, имеющие, по ее словам, такие уникальные характеристики, как коллимированный выходной поток и волноводное распространение света. Там считают, что лазерные диоды обладают убедительными преимуществами по сравнению со светодиодами, OLED и традиционными источниками света.

Независимая компания SoraaLaser, в создании которой участвовал Накамура, отпочковалась от Soraa Inc. «Лазерные диоды имеют монотонную зависимость оптической мощности от тока и могут сочетаться с люминофорами для безопасной генерации высоконаправленного выходного потока с намного более впечатляющим отношением люмен/ватт, чем у других источников света, – сказал Накамура в интервью, данном Lux Review. – Лазерные диоды – это будущее освещения».

В своем эксклюзивном интервью Накамура описывает технологию как «прекрасную перспективу для осветительных продуктов следующего поколения».

BMW и Audi уже используют лазерный свет в фарах своих автомобилей, поскольку эффективность такой фары в десять раз выше, чем у светодиодной. Дальность излучения фары, сделанной на основе лазерных диодов, составляет 700 м, в то время как для светодиодной фары это расстояние равно всего 300 м, а для обычной автомобильной фары – лишь 100 м.

Уже создано несколько автомобилей, в фарах которых установлены лазерные диоды. Первым серийным автомобилем, в котором используются разработанные Osram фары на основе лазерных диодов, станет BMW i8, производство которого стартует летом 2016 года. Оснастили лазерными фарами и спорткар Audi R8 LMX. Лазерные диоды настолько малы, что могут быть встроены в любую структуру, открывая принципиально новые возможности для автомобильного дизайна.

Однако Накамура поспешил добавить, что прежде чем технология лазерных диодов достигнет своего полного потенциала, еще предстоит пройти определенный путь. «Мы можем создать отличное освещение уже в ближайшем будущем, но для этого нам надо много и напряженно работать, чтобы повысить эффективность лазерных диодов. Я думаю, что это открывает перед нами огромные возможности», – сказал он.

В своих источниках видимого света SoraaLaser объединила лазерные диоды собственной запатентованной конструкции, изготавливаемые на основе полуполярного нитрида галлия, и усовершенствованный люминофор. По сравнению с другими источниками света лазеры обладают совершенно новыми свойствами, сочетая в себе такие преимущества твердотельного освещения, как минимальное потребление мощности и большой срок службы, с высоконаправленным потоком, получить который позволяли только старые технологии.

Поскольку лазерный луч фокусируется на маленьком пятнышке люминофора, где преобразуется в видимое излучение, источники SoraaLaser позволяют получать безопасный, высококоллимированный белый свет, предоставляя при этом уникальные возможности оптического управления с помощью миниатюрных линз и отражателей, а также исключительно эффективного безбликового распределения светового потока посредством использования волоконных световодов. По мнению компании, первоначальные рыночные ниши лазерные светильники найдут в приложениях фасадной архитектуры, гостиничной индустрии, розничной торговли, безопасности, сферы развлечений и автомобильной промышленности.

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение — до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем — около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc — сопротивление в килоомах (обычно от 75 до 1000 кОм).

Важно  Красивые и прикольные поздравления мужу с годовщиной свадьбы 6 лет (с чугунной свадьбой) своими словами

Резистор включается между 8-ой ногой микросхемы и «землей» (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc — 22 = 25/0.24 — 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов — 3А, рабочее напряжение — 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема — это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А) 135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь) 360 руб/шт.
Транзисторы
40N06 11 руб/шт.
IRF7413 14 руб/шт.
IPD090N03L 14 руб/шт.
IRF7201 17 руб/шт.
50N06 12 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В) 15 руб/шт.
SS34 (3А, 40В) 90 коп/шт.
SS56 (5А, 60В) 3.5 руб/шт.

Основные параметры TVS-диодов

Смысл основных электрических параметров TVS легко пояснить с помощью его ВАХ (рисунок 3). Для однонаправленных диодов она имеет несимметричный вид, для двунаправленных – симметричный.

Рис. 3. ВАХ TVS-диодов

ВАХ TVS отличается от характеристики идеального защитного ограничителя. Во-первых, в выключенном состоянии TVS имеет достаточно большие обратные токи. Во-вторых, переход из области выключенного состояния в режим ограничения происходит не скачком, а плавно. В-третьих, ВАХ в режиме ограничения имеет наклон – напряжение зависит от величины тока.

Рис. 4. Зависимость пиковой мощности от длительности импульса

Для того чтобы учесть все перечисленные особенности, в документации на TVS-диоды всегда приводят характерные значения следующих токов и напряжений:

Постоянное обратное напряжение (VR, Stand-off Voltage), В – максимальное напряжение, которое можно приложить к TVS без его включения.

Ток утечки (IR, Reverse Leakage Current), мА – обратный ток, протекающий через TVS при напряжении VR и при заданной температуре окружающей среды (обычно 25°С)

В измерительных цепях важно выбирать TVS с минимальными токами утечки, чтобы избежать искажения полезных сигналов. Например, при защите измерительных цепей резистивных датчиков с токами питания в диапазоне десятков миллиампер ток утечки TVS не должен превышать десятков микроампер

Напряжение пробоя (VBR, Breakdown Voltage), В, характеризует величину напряжения пробоя. При этом пробой определяется по достижению заданного значения тока пробоя IT при заданной температуре окружающей среды. Значение IT обычно выбирается равным 1 или 10 мА.

В документации, как правило, приводят не конкретное значение напряжения пробоя, а некоторый гарантируемый диапазон.

Напряжение ограничения (VC, Clamping Voltage) характеризует падение напряжения на TVS при протекании заданного пикового тока IPP при заданной температуре окружающей среды.

Максимальный пиковый ток (IPP, Maximum Peak Pulse Current), А – ток который может пропустить супрессор без повреждения.

Для однонаправленных TVS в дополнение к перечисленным параметрам приводятся значения прямого падения напряжения и тока (VF, IF).

Пиковая мощность (PPPM, Peak Pulse Power Dissipation), Вт – значение максимальной мощности при заданной длительности импульса и заданной температуре окружающей среды.

Пиковая мощность имеет сильную зависимость от длительности приложенного импульса (рисунок 4). При выборе TVS для конкретного приложения следует тщательно изучить стандарты с требованиями к электромагнитной совместимости (ЭМС). В них указывается амплитуды, длительности и другие параметры возможных помех.

Рис. 5. Зависимость пиковой мощности и пикового тока от температуры окружающей среды

Выше было неоднократно указано, что значения электрических параметров указываются для конкретных значений температуры. Рост температуры приводит к уменьшению допустимых значений пиковой мощности и токов (рисунок 5).

Важно упомянуть и дополнительные параметры TVS. Емкость (С, Capacity), пФ, характеризует собственную емкость TVS

Этот параметр является достаточно противоречивым

Емкость (С, Capacity), пФ, характеризует собственную емкость TVS. Этот параметр является достаточно противоречивым.

С одной стороны, чем больше емкость, тем эффективнее будет ограничение помех. Фактически ограничение помехи начинается благодаря заряду емкости еще до того, как начнется пробой.

С другой стороны, большая емкость будет негативным фактором в случае использования в быстродействующих цепях, так как будет вносить задержку в распространение сигналов.

Тепловое сопротивление «переход-вывод» (RuJL, Typical Thermal Resistance Junction to Lead) или тепловое сопротивление «переход – окружающая среда» (RuJA, Typical Thermal Resistance Junction to Ambient). Эти параметры важны при учете возможностей увеличения пиковой мощности за счет увеличения теплоотвода. Теплоотвод улучшается при использовании радиаторов и при монтаже на плату.

Анализ особенностей TVS показывает наличие и ряда недостатков. С одной стороны, TVS не являются идеальными ограничителями напряжения. Степень ограничения зависит от мощности помехи (рисунок 6). С другой стороны, характеристики TVS зависят от температуры окружающей среды. Однако во многих случаях TVS являются более оптимальным выбором по сравнению с другими защитными компонентами, такими как разрядники, варисторы, тиристоры.

Рис. 6. Особенности ограничения входного импульса напряжения

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

  • Батарей;
  • Аккумуляторных источников питания;
  • Стационарных сетей на 220 В (при соответствующей защите от перепадов тока и напряжения).

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

  • Стабилизатор напряжения;
  • Конденсатор;
  • Токоограничивающие резисторы;
  • Лазерный диод.

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Рис 4 Одно из подключений лазерного диода

Рейтинг светодиодных прожекторов

5 место Hager EE610

5 место рейтинга занимает модель от германского бренда в стиле хайтек. Мощность 15 Вт выдает 1100 люмен, что при теплоте свечения 4000 K вполне достаточно для придомовых территорий, жилых зон. Корпус изготовлен из качественного поликарбоната со степенью защиты IP55. Характеристики на первый взгляд не самые впечатляющие, но указаны с предельной честностью. Прожектор оснащен датчиком движения. Крепление быстросъемное, на посадочной платформе. Из недостатков — сложность с регулировкой направления и цена.

Важно  Ламповый усилитель почти из хлама

4 место Jooby Cobra 60W

4 место за украинским аппаратом из алюминиевого сплава с японскими комплектующими, в том числе с диодом Citizen на 50 Вт, выдающим 5500 люмен холодного света. Предназначен для освещения парковых, охранных зон, скверов, придомовых территорий. Степень защиты IP65, стабилизатор напряжения выдерживает скачки сети от 85 до 265 вольт. Примечательно, что гарантия на агрегат выдается на пять лет, что рекордно для местной сборки, но соответствует качеству японских деталей.

3 место Osram М3 90W

Открывает тройку агрегат Российской сборки с германскими комплектующими и японскими светодиодами Nichia, общей мощностью 90 Вт, выдающим 11 700 люмен нейтральной температуры. Корпус алюминиевый с классом защиты IP66. Заявленный срок службы 12 лет, но гарантия только на 2 года, что относится к недостаткам. Впрочем, незатейливая с виду конструкция вполне надежная и нареканий прожектор у потребителей не вызывает. Фонарь крепится на консоль с фиксированным углом направления.

2 место Philips BVP176 LED190

Изготовленный в Нидерландах или в Китае, но под контролем голландских технологов уличный фонарь один из лучших среди осветительных приборов в своей категории. Мощность 200 В вполне соответствует световому потоку в 19 000 люмен, притом что цвет излучения теплый — 3000K. Литой алюминий и поликарбонатная линза защищают устройство на уровне IP65 от пыли и струй воды. Единственный недостаток – это возможность некорректной работы при достижении минимальной эксплуатационной температуры -40°C и переплата за бренд.

1 место Geniled element 100W

Лидером топа становится Российский производитель, один из самых честных в отношении соответствия заявленных параметров реальным цифрам при тестировании. Аппарат выдает 100 люмен/ватт холодного света в 5000 K. Алюминиевый корпус с защитой IP65 имеет возможность крепления сразу в трех вариантах: на консоль (трубу), на поворотный кронштейн или на подвес. Прожектор стабильно работает в температурном диапазоне от +50 до -45°C. Гарантийное обслуживание предоставляется в течении 3 лет. Из недостатков — относительно холодное свечение, но, учитывая местную сборку, можно заказать аппарат в комплектации с более теплыми светодиодами.

Фокусировка светового потока в луч

Создавая лазерную установку и используя для этого диод, извлеченный из DVD-RW привода, необходимо понимать, что испускаемый свет будет аналогичным стандартному светодиоду.

Свечение светодиода

Но нам же необходим лазерный луч. Чтобы его сделать, необходимо использовать коллиматор – специальную линзу. С ее помощью будет происходить фокусирование светового потока в луч. Отличным решением будет применение в устройстве линзы, взятой из старой лазерной указки. Устанавливая ее при помощи гаек и пружин, появится возможность более точной фокусировки лазера (его приближение и удаление). Также линзу можно прикрепить к лазерному диоду с помощью эпоксидного клея или двухстороннего скотча.
Из-за того, что не всегда можно отыскать мощный диод, в данной ситуации рекомендуется использовать модель 808нм.

Получение зеленого луча

С помощью кристалла определенного цвета можно получить лазерный луч зеленого, желтого, красного и синего цвета.

Разновидности лазерных диодов

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя. Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте. Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз. В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа. А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

Лазерный диод с двойной гетероструктурой (ДГС).

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Рис 2 Лазерный диод — вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

Лазерный диод с гетероструктурой и раздельным удержанием

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток — они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

Лазерные диоды с распределением обратной связи (РОС).

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей. При помощи поперечной насечки в области p-n — перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны. Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Какая полярность светодиодов

Если диод не светится, значит ток не движется по прямой. Это значит, что при производстве диода не были учтены катод и анод. Полярность светодиодов практически не подлежит визуальному определению. Выявить ее можно при помощи мультимера, технической документации и простого монтажа по схеме.

P-n переход подключают к источнику постоянного напряжения в зависимости от полярности выводов. Под действием напряжения начинают двигаться свободные отрицательно заряженные электроны и дырки с положительным зарядом в направлении к полюсам.

В p-n переходе заряды создают рекомбинацию, электроны перемещаются из зоны проводимости в зону валентности, преодолевая уровень Ферми. Часть энергии выходит с выделением волн света разного спектра и яркости.

Оцените статью
Понравилась статья?
Комментарии (0)
Комментариев нет, будьте первым кто его оставит
Добавить комментарий
Ваш e-mail не будет опубликован. Обязательные поля помечены *